direct product, abelian, monomial, 2-elementary
Aliases: C22×C46, SmallGroup(184,12)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22×C46 |
C1 — C22×C46 |
C1 — C22×C46 |
Generators and relations for C22×C46
G = < a,b,c | a2=b2=c46=1, ab=ba, ac=ca, bc=cb >
(1 134)(2 135)(3 136)(4 137)(5 138)(6 93)(7 94)(8 95)(9 96)(10 97)(11 98)(12 99)(13 100)(14 101)(15 102)(16 103)(17 104)(18 105)(19 106)(20 107)(21 108)(22 109)(23 110)(24 111)(25 112)(26 113)(27 114)(28 115)(29 116)(30 117)(31 118)(32 119)(33 120)(34 121)(35 122)(36 123)(37 124)(38 125)(39 126)(40 127)(41 128)(42 129)(43 130)(44 131)(45 132)(46 133)(47 173)(48 174)(49 175)(50 176)(51 177)(52 178)(53 179)(54 180)(55 181)(56 182)(57 183)(58 184)(59 139)(60 140)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 150)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)(81 161)(82 162)(83 163)(84 164)(85 165)(86 166)(87 167)(88 168)(89 169)(90 170)(91 171)(92 172)
(1 90)(2 91)(3 92)(4 47)(5 48)(6 49)(7 50)(8 51)(9 52)(10 53)(11 54)(12 55)(13 56)(14 57)(15 58)(16 59)(17 60)(18 61)(19 62)(20 63)(21 64)(22 65)(23 66)(24 67)(25 68)(26 69)(27 70)(28 71)(29 72)(30 73)(31 74)(32 75)(33 76)(34 77)(35 78)(36 79)(37 80)(38 81)(39 82)(40 83)(41 84)(42 85)(43 86)(44 87)(45 88)(46 89)(93 175)(94 176)(95 177)(96 178)(97 179)(98 180)(99 181)(100 182)(101 183)(102 184)(103 139)(104 140)(105 141)(106 142)(107 143)(108 144)(109 145)(110 146)(111 147)(112 148)(113 149)(114 150)(115 151)(116 152)(117 153)(118 154)(119 155)(120 156)(121 157)(122 158)(123 159)(124 160)(125 161)(126 162)(127 163)(128 164)(129 165)(130 166)(131 167)(132 168)(133 169)(134 170)(135 171)(136 172)(137 173)(138 174)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)(93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138)(139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184)
G:=sub<Sym(184)| (1,134)(2,135)(3,136)(4,137)(5,138)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,101)(15,102)(16,103)(17,104)(18,105)(19,106)(20,107)(21,108)(22,109)(23,110)(24,111)(25,112)(26,113)(27,114)(28,115)(29,116)(30,117)(31,118)(32,119)(33,120)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,128)(42,129)(43,130)(44,131)(45,132)(46,133)(47,173)(48,174)(49,175)(50,176)(51,177)(52,178)(53,179)(54,180)(55,181)(56,182)(57,183)(58,184)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)(81,161)(82,162)(83,163)(84,164)(85,165)(86,166)(87,167)(88,168)(89,169)(90,170)(91,171)(92,172), (1,90)(2,91)(3,92)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,61)(19,62)(20,63)(21,64)(22,65)(23,66)(24,67)(25,68)(26,69)(27,70)(28,71)(29,72)(30,73)(31,74)(32,75)(33,76)(34,77)(35,78)(36,79)(37,80)(38,81)(39,82)(40,83)(41,84)(42,85)(43,86)(44,87)(45,88)(46,89)(93,175)(94,176)(95,177)(96,178)(97,179)(98,180)(99,181)(100,182)(101,183)(102,184)(103,139)(104,140)(105,141)(106,142)(107,143)(108,144)(109,145)(110,146)(111,147)(112,148)(113,149)(114,150)(115,151)(116,152)(117,153)(118,154)(119,155)(120,156)(121,157)(122,158)(123,159)(124,160)(125,161)(126,162)(127,163)(128,164)(129,165)(130,166)(131,167)(132,168)(133,169)(134,170)(135,171)(136,172)(137,173)(138,174), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184)>;
G:=Group( (1,134)(2,135)(3,136)(4,137)(5,138)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,101)(15,102)(16,103)(17,104)(18,105)(19,106)(20,107)(21,108)(22,109)(23,110)(24,111)(25,112)(26,113)(27,114)(28,115)(29,116)(30,117)(31,118)(32,119)(33,120)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,128)(42,129)(43,130)(44,131)(45,132)(46,133)(47,173)(48,174)(49,175)(50,176)(51,177)(52,178)(53,179)(54,180)(55,181)(56,182)(57,183)(58,184)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)(81,161)(82,162)(83,163)(84,164)(85,165)(86,166)(87,167)(88,168)(89,169)(90,170)(91,171)(92,172), (1,90)(2,91)(3,92)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,61)(19,62)(20,63)(21,64)(22,65)(23,66)(24,67)(25,68)(26,69)(27,70)(28,71)(29,72)(30,73)(31,74)(32,75)(33,76)(34,77)(35,78)(36,79)(37,80)(38,81)(39,82)(40,83)(41,84)(42,85)(43,86)(44,87)(45,88)(46,89)(93,175)(94,176)(95,177)(96,178)(97,179)(98,180)(99,181)(100,182)(101,183)(102,184)(103,139)(104,140)(105,141)(106,142)(107,143)(108,144)(109,145)(110,146)(111,147)(112,148)(113,149)(114,150)(115,151)(116,152)(117,153)(118,154)(119,155)(120,156)(121,157)(122,158)(123,159)(124,160)(125,161)(126,162)(127,163)(128,164)(129,165)(130,166)(131,167)(132,168)(133,169)(134,170)(135,171)(136,172)(137,173)(138,174), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184) );
G=PermutationGroup([[(1,134),(2,135),(3,136),(4,137),(5,138),(6,93),(7,94),(8,95),(9,96),(10,97),(11,98),(12,99),(13,100),(14,101),(15,102),(16,103),(17,104),(18,105),(19,106),(20,107),(21,108),(22,109),(23,110),(24,111),(25,112),(26,113),(27,114),(28,115),(29,116),(30,117),(31,118),(32,119),(33,120),(34,121),(35,122),(36,123),(37,124),(38,125),(39,126),(40,127),(41,128),(42,129),(43,130),(44,131),(45,132),(46,133),(47,173),(48,174),(49,175),(50,176),(51,177),(52,178),(53,179),(54,180),(55,181),(56,182),(57,183),(58,184),(59,139),(60,140),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,150),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160),(81,161),(82,162),(83,163),(84,164),(85,165),(86,166),(87,167),(88,168),(89,169),(90,170),(91,171),(92,172)], [(1,90),(2,91),(3,92),(4,47),(5,48),(6,49),(7,50),(8,51),(9,52),(10,53),(11,54),(12,55),(13,56),(14,57),(15,58),(16,59),(17,60),(18,61),(19,62),(20,63),(21,64),(22,65),(23,66),(24,67),(25,68),(26,69),(27,70),(28,71),(29,72),(30,73),(31,74),(32,75),(33,76),(34,77),(35,78),(36,79),(37,80),(38,81),(39,82),(40,83),(41,84),(42,85),(43,86),(44,87),(45,88),(46,89),(93,175),(94,176),(95,177),(96,178),(97,179),(98,180),(99,181),(100,182),(101,183),(102,184),(103,139),(104,140),(105,141),(106,142),(107,143),(108,144),(109,145),(110,146),(111,147),(112,148),(113,149),(114,150),(115,151),(116,152),(117,153),(118,154),(119,155),(120,156),(121,157),(122,158),(123,159),(124,160),(125,161),(126,162),(127,163),(128,164),(129,165),(130,166),(131,167),(132,168),(133,169),(134,170),(135,171),(136,172),(137,173),(138,174)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92),(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138),(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184)]])
C22×C46 is a maximal subgroup of
C23.D23
184 conjugacy classes
class | 1 | 2A | ··· | 2G | 23A | ··· | 23V | 46A | ··· | 46EX |
order | 1 | 2 | ··· | 2 | 23 | ··· | 23 | 46 | ··· | 46 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
184 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C23 | C46 |
kernel | C22×C46 | C2×C46 | C23 | C22 |
# reps | 1 | 7 | 22 | 154 |
Matrix representation of C22×C46 ►in GL3(𝔽47) generated by
1 | 0 | 0 |
0 | 46 | 0 |
0 | 0 | 46 |
46 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 46 |
24 | 0 | 0 |
0 | 38 | 0 |
0 | 0 | 27 |
G:=sub<GL(3,GF(47))| [1,0,0,0,46,0,0,0,46],[46,0,0,0,1,0,0,0,46],[24,0,0,0,38,0,0,0,27] >;
C22×C46 in GAP, Magma, Sage, TeX
C_2^2\times C_{46}
% in TeX
G:=Group("C2^2xC46");
// GroupNames label
G:=SmallGroup(184,12);
// by ID
G=gap.SmallGroup(184,12);
# by ID
G:=PCGroup([4,-2,-2,-2,-23]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^46=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations
Export